Model 820-303, 820-303-1

Remote Displays

TABLE OF CONTENTS

SECTION	PARAGRAPH	TITLE
ONE		GENERAL INFORMATION
	1.1	Scope of Manual
	1.2	Purpose of Equipment
	1.3	Physical Specifications
	1.4	Environmental Specifications
	1.5	Power Specifications
	1.6	Display Specifications
	1.7	RS-232C Interface Specifications
	1.8	RS-422A Interface Specifications
	1.9	Code Input Specifications
TWO		INSTALLATION AND OPERATION
	2.1	Introduction
	2.2	Installation
	2.3	Alphanumeric Mode
	2.3.1	I/O Port Selection
	2.3.2	Data Rate and Format Selection
	2.3.3	CTS Enable
	2.3.4	Command Set Selection
	2.3.5	Address Selection
	2.3.6	Port B Mode Selection
	2.4	Alphanumeric Operation
	2.4 .1	Display Format
	2.4.2	I/O Port Commands
	2.4 .3	Amplified Command Set
	2.4.3.1	Enter Text Command
	2.4.3.2	Display Stored Text Command
	2.4.3.3	Display Keyboard Text Command
	2.4.4	Abbreviated Command Set
	2.5	Time Code Translator Mode
	2.5.1	Format Selection
	2.5.2	Data Display Selection
THREE		THEORY OF OPERATION
	3.1	Introduction
	3.2	Circuit Card Descriptions
FOUR		MAINTENANCE \& TROUBLESHOOTING
	4.1	Introduction
	4.2	Preventative Maintenance
	4.2.1	Inspection
	4.2.2	Cleaning
	4.2.3	Qualification
	4.3	Troubleshooting
	4.3.1	General Troubleshooting Procedures

TABLE OF CONTENTS (Continued)

SECTION	PARAGRAPH	TITLE
FOUR		MAINTENANCE \& TROUBLESHOOTING (Continued)
	4.3.2	Power Circuits
	4.3.3	Locating Drawings
	4.3.4	Locating Circuits
	4.3.5	Circuit Card Removal
	4.3.6	Replacing Components
FIVE		DRAWINGS
Drawing Number		Title
820-303		Top Assembly
820-303-1		Top Assembly
800-5284		Display Assembly
800-5270		Display Assembly
800-5270-1		Decoder Assembly
800-5269		Processor Assembly
800-5269-1		Connector Assembly

SECTION ONE

GENERAL INFORMATION

1.1 SCOPE OF MANUAL

This manual contains the information necessary to operate and maintain a TrueTime model 820-303 series Alphanumeric/Code Translator Remote Display.

1.2 PURPOSE OF EQUIPMENT

The 0.45 inch Remote Message Display may display up to one hundred 24-character alphanumeric messages input via either an RS-232C port or an RS-422A port, or display time translated from an input code. The 820-303 model contains two identical displays that can be controlled independently. In models with two displays, the internal boards nearest the front, the lefthand front panel display, and the top row of rear panel I/O connectors are display \#1. The internal boards nearest the rear, the righthand front panel display, and the bottom row of rear panel I/O connectors comprise display \#2.

In alphanumeric mode only 12 characters may be displayed at one time; longer messages may be scrolled across the display. Messages 12 characters or less may be scrolled, displayed static or blink. Messages are retained in non-volatile RAM at power-down, and therefore need not be re-entered upon subsequent power-up.

The RS-232C and RS-422A ports may be connected to terminals, computers, or other devices using the appropriate signal levels. Secondary RS-232C and RS-422A output ports duplicate the input signals and therefore permit "daisy-chaining" of multiple units. The data rate and format of the RS-232C and RS-422A ports are switch-selectable at the rear panel. The address of the unit may be set from 1 to 255 , and also responds to master address 000 common to all like units.

In code input mode, the unit autodetects the input code (IRIG B, MILA, BUDX, CS1-4) and translates the coded information. It is not necessary to cycle power when the input code is changed. If the input is disconnected, the Remote Display will display all blank.

1.3 PHYSICAL SPECIFICATIONS

Height:
Width:
Depth:
Weight:

> 1.73 in $(4.39 \mathrm{~cm})$
> Suitable for mounting in a standard 19.0 in $(48.26 \mathrm{~cm})$ rack
> 14.0 in $(35.56 \mathrm{~cm})$ plus mating connectors
> Approximately 10 lb

1.4 ENVIRONMENTAL SPECIFICATIONS

```
Operating Temperature: }\quad+3\mp@subsup{2}{}{\circ}\mathrm{ to +122.}\textrm{F}(\mp@subsup{0}{}{\circ}\mathrm{ to }+5\mp@subsup{0}{}{\circ}\textrm{C}
Storage Temperature: }\quad-4\mp@subsup{0}{}{\circ}\mathrm{ to +158}\mp@subsup{}{}{\circ}\textrm{F}(-4\mp@subsup{0}{}{\circ}\mathrm{ to +70}\mp@subsup{}{}{\circ}\textrm{C}
Humidity:
Cooling Mode:
95% relative, non-condensing
Convection
```


1.5 POWER SPECIFICATIONS

Voltage:
Frequency:
Power:
Fuse:
Connector:

1.6 DISPLAY SPECIFICATIONS

Display:
Digit Size:
Luminescence:
Lens:
Character Set:

95 to 260 VAC
47 to 440 Hz
Approximately 20 W
3AG 1 Amp slow blow
CORCOM 6EF1

1.7 RS-232C INTERFACE SPECIFICATIONS

The primary RS-232C Input Interface specifications are:

Data:	Serial ASCII characters
Levels:	RS-232C
Data Rate:	Selectable, 110, 150, 300, 600, 1200, 2400, 9600 or
	19200 bps, see Table 2-1
Data Bits:	Selectable, 7 or 8
Stop Bits:	Selectable, 1 or 2
Parity:	Odd, even, none
Connector:	Male 25-pin D subminiature, J5 (J11)*
Mating Connector:	Female 25-pin D subminiature
Pin Assignment:	See Table 1-1

* Indicates data for second independent display when present

Table 1-1
RS-232 Connector J5 (J11) Pin Assignment

Pin	Assignment
2	RXD Input
3	TXD (Not used)
4	CTS (Optional)
5	RTS
6	DTR
7	GND

The buffered secondary RS-232C Output Interface specifications are identical to the primary specifications except:

Connector:
Mating Connector:
Pin Assignment:

Female 25-pin D subminiature, J6 (J12)
Male 25 -pin D subminiature
See Table 1-2

Table 1-2
RS-232 Connector J6 (J12) Pin Assignment

Pin	Assignment
2	RXD Output
3	TXD (Not used)
4	CTS (Optional)
5	RTS
6	DTR
7	GND

1.8 RS-422A INTERFACE SPECIFICATIONS

Data:
Levels;
Data Rate:

Data Bits:
Stop Bits:
Parity:
Primary Connector:
Mating Connector:
Pin Assignment:

Serial ASCII characters
RS-422A
Selectable, 110, 150, 300, 600, 1200, 2400, 9600 or
19200 bps, (see Table 2-1)
Selectable, 7 or 8
Selectable, 1 or 2
Odd, even, none
Female Twinax
Male Twinax
Center pin RX+, outside conductor RX-

The secondary RS-422A Interface specifications are identical to the primary interface specifications. Note that the secondary interface is not buffered.

1.9 CODE INPUT SPECIFICATIONS

Format:
Frequency:
Amplitude:
Ratio:
Impedance:
Direction:
Polarity:
Connector:
Format:
Frequency:
Amplitude:
Ratio:
Impedance:
Direction:
Polarity:
Connector:

IRIG B, MILA, CS-1 110, CS-2 111, CS-3 114,
CS-4 112/116
1 kHz
0.3 to $12 \mathrm{Vp}-\mathrm{p}$

2:1 to 6:1
600Ω
Forward
Positive or Negative
Female BNC, "Code In"
BUDX
345 Hz
0.3 to $12 \mathrm{Vp}-\mathrm{p}$

2:1 to 6:1
600Ω
Forward
Positive or Negative
Female BNC, "Code In"

SECTION TWO

INSTALLATION AND OPERATION

2.1 INTRODUCTION

This section contains installation instructions and operating procedures.

2.2 INSTALLATION

Unpack the unit and carefully inspect the unit for shipping damage. Any damage must be reported to the carrier immediately.

Fabricate any required cables and connect them to the appropriate rear-panel connectors. Connect the power-cord to the connector on the rear panel.

Use the DIP switches on the appropriate 800-5269-1 switch board to select the I/O port parameters, device address and Port B mode as described below. All switches may be changed while the power is on and any change will take effect immediately.

2.3 ALPHANUMERIC MODE

Select Alphanumeric mode by turning off S3 Section 8 before power up. To change to translator mode during operation, send the following string to the appropriate RS input:

> <STX>AN\#\#\#S3-8=OFF<ETX>

The unit will use the actual setting of the internal S3-8 as the default upon subsequent power-up.

2.3.1 I/O PORT SELECTION

Select either RS-232C or RS-422A port control with switch S1-1 and S1-2. Refer to Table 2-1 for the appropriate switch settings.

Table 2-1
I/O Port Selection Switch S1

Port	Section 1	Section 2
RS-232C	OFF	ON
RS-455A	ON	OFF

2.3.2 DATA RATE AND FORMAT SELECTION

Use switch S1 Sections 4 through 7 to select the data rate for either the RS-232C or RS-433A ports as shown in Table 2-2.

Use switch S3 Sections 3 through 5 to select the number of data bits, the parity and the number of stop bits for either the RS-232C or RS-422A port as shown in Table 2-3.

Table 2-2
Data Rate Selection Switch S1

Rate	Section 4	Section 5	Section 6	Section 7
110	OFF	OFF	OFF	OFF
150	ON	OFF	OFF	OFF
300	OFF	ON	OFF	OFF
600	ON	OFF	OFF	ON
1200	OFF	OFF	ON	OFF
2400	ON	ON	OFF	OFF
4800	OFF	ON	ON	OFF
9600	ON	ON	ON	OFF
19200	ON	ON	ON	ON

Note: Section 8 is not used.
Table 2-3
Data Format Switch S3

DATA BITS	PARITY BITS	STOP BITS	SECTION 3	SECTION 4	SECTION 5
7	EVEN	2	OFF	OFF	OFF
7	ODD	2	ON	OFF	OFF
7	EVEN	1	OFF	ON	OFF
7	ODD	1	ON	ON	OFF
8	NONE	2	OFF	OFF	ON
8	NONE	1	ON	OFF	ON
8	EVEN	1	OFF	ON	ON
8	ODD	1	ON	ON	ON

Note: Sections 6, 7, and 8 are not used in Alphanumeric mode.

2.3.3 CTS ENABLE

The use of the RS-232C port handshake line CTS is optional. Set switch S1-3 ON to enable the CTS line. Set the switch OFF to use the port without handshaking.

2.3.4 COMMAND SET SELECTION

Use switch S3-2 to select one of two command sets. Turn the switch OFF to select the amplified command set and ON to select the abbreviated command set.

2.3.5 ADDRESS SELECTION

Use switch S 2 to select the 8 -bit binary address of this unit. Section 1 of the switch represents the least significant bit and Section 8 represents the most significant bit. Each section represents successive powers of 2 , the place values in a binary number, as shown in Table 2-4. ON is a binary 1 and OFF is a binary zero. The maximum address is 255 , that is, binary 11111111.

Example 1: The address 197 codes to 11000101 because $1 \times 128+1 \times 64+0 \times 32$

$$
+0 \times 16+0 \times 8+1 \times 4+0 \times 2+1 \times 1=197 .
$$

Example 2: The address 10 codes to 00001010.

Table 2-4
Address Selection Switch S2

SECTION	$>$	8	7	6	5	4	3	2
PLACE VALUE >	128	64	32	16	8	4	2	1

2.3.6 PORT B MODE SELECTION

Use switch S3 Section 1 to select the mode for port B, either channel output mode or code output mode. ON selects channel output mode and OFF selects code output mode. Refer to Section 2.3.3.3 for an explanation of the operation of port B.

2.4 ALPHANUMERIC OPERATION

The following paragraphs explain the operation of the Remote Display in Alphanumeric mode.

2.4.1 DISPLAY FORMAT

Upon first power-up the 12-character display will show the message TRUETIME INC. The message or messages displayed are in response to commands sent via the I/O port selected. Any message longer than 12 characters will be scrolled across the display. Messages will blink only if the BLINK attribute was set in the command that stores the message.

2.4.2 I/O PORT COMMANDS

Commands are sent via the selected I/O port, either RS-232C port or the RS-422A port. There are two possible command sets, Amplified and Abbreviated, selected by switch S3 Section 2.

2.4.3 AMPLIFIED COMMAND SET

The Amplified Command Set contains four commands each with a different syntax. All commands may use either upper- or lower-case characters although all messages will display in upper-case characters. The four commands available are:

Enter Text
Display Stored Text
Change Parameter
Display Keyboard Text

2.4.3.1 ENTER TEXT COMMAND

To enter or alter stored text send a command to the input port of the form

```
<STX>AN<ADDR>TEXT#<NUMBER>[<ATTRIBUTE>]=<TEXT><ETX>
where
<STX> is a ASCII start-of-text character (CTRL-B, HEX 02)
AN is the ASCII string AN
<ADDR> is the 3-digit address of the unit that will receive the text
TEXT# is the ASCII string TEXT#
<NUMBER> is the 2-digit identification number assigned to the text
[ is the ASCII character [
<ATTRIBUTE> is either the ASCII string NORMAL, BLINK or SCROLL
] is the ASCII character ]
= is the ASCII = character
<TEXT> is the 0- to 24-character text to be displayed
<ETX> is the ASCII end-of-text character (CTRL-C, HEX 03)
```

The display will show no apparent change even if the specified text is currently being displayed. Note that different texts may have the same text number provided they are sent to units with different addresses. To alter only the ATTRIBUTE of a previously-stored text, send a command of the above form but omit the $=$ and the text field. If the attribute field is omitted, the attribute NORMAL will be assumed unless the text is longer than 12 characters, in which case the attribute SCROLL will be assumed. The address 000 is a universal address. Any command specifying address 000 will be stored in all units.

Sample command:
<STX>AN201TEXT\#21[BLINK]=ALERT <ETX>
Result:
The text "ALERT" is stored as text \#21 with a BLINK attribute in the unit with address 201.

Sample command:
<STX>AN001TEXT\#22[NORMAL]=Clear<ETX>
Result:
The text "CLEAR" is stored as text \#22 with a NORMAL ATTRIBUTE in the unit with address 001.

Sample command:
<STX>AN001text\#21[SCROLL]<ETX>
Result:
The ATTRIBUTE of the previously stored text \#21 in the unit with address 001 is now SCROLL.

2.4.3.2 DISPLAY STORED TEXT COMMAND

To display stored text send a command to the input port of the form:

```
<STX>AN<ADDR>TEXT#<NUMBER><ETX>
```

```
where
<STX> is a ASCII start-of-text character (CTRL-B, HEX 02)
AN is the ASCII string AN
<ADDR> is the 3-digit address of the stored text
TEXT\# is the ASCII string TEXT\#
<NUMBER> is the 2-digit identification number assigned to the text or a series
    of such numbers separated with commas
<ETX> Is the ASCII end-of-text character (CTRL-C, HEX 03)
```

The display will respond by displaying the text specified in the command using the ATTRIBUTE stored with that text on the unit with the specified address. The address 000 is a universal address. Any command specifying address 000 will display on all units.

Sample command:

```
<STX>AN201TEXT#21<ETX>
```

Result:
The previously-stored text \#21 "ALERT" blinks on the display of the unit with address 201.

Sample command:
<STX>AN001TEXT\#22<ETX>
Result:
The previously-stored text \#22 "CLEAR" displays on the unit with address 001 until another command is sent to that unit.

Sample command:
<STX>AN000TEXT\#22<EXT>

Result:
All units display their text \#22, which may be different in different units.
Sample command:
<STX>AN001TEXT\#21,22<EXT>
Result:
Unit 001 will display the combined text \#21 and \#22 sequentially: "ALERT CLEAR". If the combined text had exceeded 12 characters, it would have scrolled across the display.

2.4.3.3 DISPLAY KEYBOARD TEXT COMMAND

To display text immediately as typed on a keyboard send the command
<STX>AN<ADDR>KEYBD<ETX>

where	
<STX>	is a ASCII start-of-text character (CTRL-B, HEX 02)
AN	is the ASCII string AN
<ADDR>	is the 3-digit address which will receive the command
KEYBDD	is the ASCII character string KEYBD
<ETX>	is the ASCII end-of-text character (CTRL-C, HEX 03)

The display will blank and await keyboard entry. Characters will display as they are entered on the keyboard each set of 12 characters overwriting the previous set. Display of keyboard-entered characters ceases upon receipt of an end-of-text character <ETX>.

2.4.4 ABBREVIATED COMMAND SET

The Abbreviated Command Set contains only one command which is used to immediately display text as entered. Send a command of the form
<STX><ADDRESS><TEXT><ETX>
where

```
<STX> is a ASCII start-of-text character (CTRL-B, HEX 02)
<ADDRESS> is a single ASCII character whose decimal equivalent is the unit address
<TEXT> is the 0- to 24-character text to be displayed - any ASCII character is
    permitted.
<ETX> is the ASCII end-of-text character (CTRL-C, HEX 03)
```

The address CTRL-@ (ASCII decimal equivalent 000) is a universal address. Any command specifying this address will be displayed on all units. The default parameters are:

HI display intensity
FAST blink rate or scroll speed
NORMAL attribute for text shorter than 13 characters
SCROLL attribute for text longer than 12 characters
Sample command:
<STX>BLift Off<ETX>
Result:
The text "LIFT OFF" is immediately displayed on the unit with address 65 (the ASCII decimal equivalent of B).

Sample command:
<STX><CTRL-@>All Clear<ETX>
Result:
The text "ALL CLEAR" is immediately displayed on all units.

2.5 TIME CODE TRANSLATOR MODE

Select Time Code Translator mode by turning S3-8 on prior to power up. To change to translator mode during operation, send the following string to the appropriate RS input:
<STX>AN\#\#\#S3-8=ON<ETX>

The unit will use the actual setting of the internal S3-8 as the default upon subsequent power-up.

2.5.1 FORMAT SELECTION

The format of the time display can be controlled using S3, segment 6 . Table 2-5 shows the display format for each type of code for either switch position.

Table 2-5
Display Formats

Input Code	S3-6 Off	S3-6 On	Range
IRIG B	DDD HH MM SS	DDD HH MM SS	001:00:00:00 to 366:23:59:59
$\begin{aligned} & \hline \text { CS-1 } 110 \text { TOY } \\ & \text { CS-1 } 110 \text { ECS } \end{aligned}$	$\begin{array}{r} \hline \pm \text { DDD HH MM SS DDD } \\ \text { HH MM SS } \\ \text { *DD HH MM SS } \\ \hline \end{array}$	\pm DDD HH MM SS DDDHHMMSS -DDDHHMMSS	$\pm 001: 00: 00: 00$ to $\pm 366: 23: 59: 59$ -99:23:59:59 to 366:23:59:59 (Off) -366:23:59:59 to 366:23:59:59 (On)
CS-2 116 ECS CS-2 116 SBS	$\begin{array}{r} \hline \text { DDD HH MM SS } \\ \text { *DD HH MM SS } \\ \text { SS,SSS,SSS } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { DDDHHMMSS } \\ \text {-DDDHHMMSS } \\ \text { SS,SSS,SSS } \end{array}$	$\begin{gathered} -99: 23: 59: 59 \text { to } 366: 23: 59: 59 \text { (Off) } \\ -366: 23: 59: 59 \text { to } 366: 23: 59: 59 \text { (On) } \\ 00,000,001 \text { to } 39,999,999 \\ \hline \end{gathered}$
CS-3 114 ECS	DDD HH MM SS *DD HH MM SS HH MM SS.S	DDDHHMMSS -DDDHHMMSS DDDHHMMSS.S	$\begin{gathered} -99: 23: 59: 59 \text { to } 366: 23: 59: 59 \text { (Off) } \\ -366: 23: 59: 59 \text { to 366:23:59:59 (On) } \\ 001: 00: 00: 00.0 \text { to 366:23:59:59 } \\ \hline \end{gathered}$
CS-4 112/116 ECS	DDD HH MM SS *DD HH MM SS	$\begin{aligned} & \hline \text { DDDHHMMSS } \\ & \text {-DDDHHMMSS } \end{aligned}$	$\begin{gathered} \hline-99: 23: 59: 59 \text { to 366:23:59:59 (Off) } \\ -366: 23: 59: 59 \text { to 366:23:59:59 (On) } \\ \hline \end{gathered}$
MILA	DD HH MM SS -DD HH MM SS	$\begin{array}{r} \hline \text { SSSSSSS } \\ \text {-SSSSSSS } \end{array}$	$\begin{gathered} \hline-99: 23: 59: 59 \text { to 99:23:59:59 (Off) } \\ -86399 \text { to } 86399 \text { (On) } \\ \hline \end{gathered}$
BUDX/FDME ${ }^{\circ}$	MMM SS -MMM SS	$\begin{array}{r} \hline \text { SSSSS } \\ \text {-SSSSS } \end{array}$	$\begin{aligned} & -999: 59 \text { to } 999: 59 \text { (Off) } \\ & -59999 \text { to } 59999 \text { (On) } \end{aligned}$

* Displays a minus sign when hundreds of days is zero.

Displays a minus sign with range error indicator if hundreds of days is non-zero.

2.5.2 DISPLAY DATA SELECTION

For time codes containing more than one set of time information, S3-7 is used to select which time to display. Table 2-6 shows the data displayed for each switch position.

Table 2-6
Display Data Selection

Input Code	S3-7 Off	S3-7 On
IRIG B	Time of Year	Time of Year
CS-1	Event Count Status	Time of Year
CS-2	Event Count Status Seconds	Event Count Status
CS-3	Time of Year Launch Time	Event Count Status
CS-4	Event Count Status (SBS)	Event Count Status
MILA	Countdown Time	Countdown Time
BUDX	Countdown Time	Countdown Time

Note: SBS indicates Straight Binary Seconds.

SECTION THREE

THEORY OF OPERATION

3.1 INTRODUCTION

The theory of operation is presented with detailed descriptions of each of the circuit boards that are supplied with the unit.

3.2 CIRCUIT CARD DESCRIPTIONS

The following pages contain the circuit card descriptions. They are inserted in numerical order.

SECTION FOUR

MAINTENANCE AND TROUBLESHOOTING

4.1 INTRODUCTION

Effective maintenance and troubleshooting of this system requires a thorough understanding of equipment characteristics, operating procedures, theory of operation and knowledge of both linear and logic circuit elements. The equipment characteristics, operating procedures and the theory of operation for the system processor are provided in SECTION ONE through SECTION THREE of this manual.

4.2 PREVENTIVE MAINTENANCE

A systematic preventative maintenance routine will reduce the possibility of a malfunction. This routine should include inspection, qualification and cleaning of the instrument.

4.2.1 INSPECTION

CAUTION: Disconnect equipment from the primary power prior to inspection. Dangerous voltages are present that can cause serious injury or loss of life.

Exercise care when handling this equipment. It contains precision parts that can be damaged by improper handling. Do not touch connector pin surfaces. Foreign material deposited on contact surfaces can cause corrosion, resulting in equipment damage or failure. Inspect the unit for damaged components, loose or frayed connections and corrosion on metal surfaces. If damage is found, correct it immediately.

4.2.2 CLEANING

CAUTION Disconnect equipment from the primary power prior to cleaning. Dangerous voltages are present that can cause serious injury or loss of life.

Accumulations of dust and dirt can impair cooling and generally distracts from equipment appearance. A soft cloth and a commercial cleaner (such as Windex) may be used to clean the paint and the lens. Be careful not to get the cleaner into switches.

4.2.3 QUALIFICATION

Verify that the unit meets all of the applicable specifications listed in SECTION ONE. Failure to meet a specification is an indication of malfunction and should be corrected immediately.

4.3 TROUBLESHOOTING

CAUTION: Only a qualified technician should attempt repair to this unit. Dangerous voltages are present that can cause serious injury or loss of life. The power supply in particular uses high voltages.

The following suggestions are general in nature. When followed, they will minimize equipment down time. Use these suggestions in conjunction with the drawings in SECTION FIVE and the circuit descriptions in SECTION THREE to diagnose equipment malfunctions.

4.3.1 GENERAL TROUBLESHOOTING PROCEDURES

Since an apparent problem may actually be the result of operator error, misunderstanding or misuse, the technician will need a thorough understanding of the normal operation. Refer to SECTION TWO for a description of normal operation. Thoroughly evaluate the procedures used by the operator when the malfunction occurred.

4.3.2 POWER CIRCUITS

Verify that power supply is as specified. Verify that the primary power fuse has not blown and that primary power is present. Check external loads where applicable.

4.3.3 LOCATING DRAWINGS

Reduced drawings of all mechanical assemblies and circuit cards are located in SECTION FIVE of this manual. The index contains a list of the drawings in this manual.

4.3.4 LOCATING CIRCUITS

SECTION THREE provides a written description of each circuit card. Use this information in conjunction with the schematics while troubleshooting.

4.3.5 CIRCUIT CARD REMOVAL

CAUTION: Disconnect equipment from the primary power prior to disassembly. Dangerous voltages are present that can cause serious injury or loss of life.

To remove a circuit card first remove the screws that secure the lid to the case. Remove the screws from the case which hold the spacers to the case. Lift the circuit cards and their spacers from the case. Reinstall the circuit cards in the same positions that they occupied before disassembly.

4.3.6 REPLACING COMPONENTS

It is imperative that the ICs are replaced with exactly the same type of component. Do not guess in this area. Use the parts lists to find the exact IC part number. Be sure not to bend under the IC legs when replacing them.

When replacing soldered components use a low temperature iron and be careful not to disturb the etch. Use a resin-core flux and clean the soldered joints carefully with alcohol. Do not allow the cleaner to penetrate the pots or switches.

SECTION FIVE

DRAWINGS

5.1 DRAWINGS

$820-303$	Top Assembly
$820-303-1$	Top Assembly
$800-5284$	Display Assembly
$800-5270$	Display Assembly
$800-5270-1$	Decoder Assembly
$800-5269$	Processor Assembly
$800-5269-1$	Connector Assembly

PART IDENTIFIEA	DESORIPTIOA	OESCP1PTL0\% ?	$\begin{aligned} & \text { EF } \\ & \text { DATE } \end{aligned}$	EOH	GTV/ASSY	10 H	WL REFRENCE DESCRIPTIOH
376001	RECPT POMET	SWITCHORAFT EAC-309	000000		1.0000	EA	07
385-034-002	COnP 34-P FY C8L MT	THOMS \& BETYS 809-3441	000000		4.0000	E4	58
306-3471	Comm 34-P M1 PO MT TT AMG	AUSEEY 509-301	000000		2.0000	EA	50 (14 On ITEM 3 3
$387-034-128$	CABLE FLAT 28AMS 34-CONO	THOHAS BETTS 201-34	000000		2.0000	FI	57 边
400-007	LABEL HMNIMG	700202	000000		1.0000	Es	21
$400-009$	GAUTION OANGEROUS VOLTAGE	$2.5 \mathrm{x}, 75$ y L WIMY/BLETX	000000		1,0000	EA	43
402-001	P1H 22-30 A WG Mini-kx	WOLE $08-6{ }^{5}-0805$	000000		28.0000	EA	51
402007	PIN 18-24 AWM STD-K4	WOLEX 08-30-0106	000000		29.0000	EA	38
403-003	COHW 3 -P CAL WT LOH 150	HOLEX 09-50-3031	000000		1.0000	EA	37
403-004	CONW L-P CBL MT LCK. 150	WOLEX 09-50-3041	000000		2.0000	EA	44
403-009		WOLE 09-50-3061	000000		3.0000	EA	38
403-01-01-02	Conn z-P CABE MOUHT LCK	HoLEX 22-61-302?	000000		2.0000	EA	35
403-01-01-05	COWN SMP CA8LE HOUNT LOM	MOLEX 22-01-3057	000000		4.0000	EA	48
$550-3160$	EPROH PPOGRMMNIMG		00000		1.0000	EA	225 (018 800-5270-1)
800-1002	Coyb Top	Fh8	00000		1.0000	Et	84
800-1003	COVEP PLATE	$F \mathrm{FB}$	000000		1.0000	EA	75
$800=1004$	LENS goo Senles Plo	PROF PLASTICS 800-1004	000000		2.0000	EA	02
900-114 ${ }^{\text {a }}$	CHASSIS 1-3/4 IN. MSPLAY P	FAB/SCREEA	000000		1.0000	EA	01
$800-1150$	FAT PHL DUAL OSPLAY F	FAB/PAIMT/SCREEH (1-3/4)	000000		1.0000	EA	03
$800-5208=1$	ASSY MEAP CON BOARD		000000		2.0000	$\mathrm{EA}^{\text {a }}$	53
800-5270-1	ASSY DISPLAY/000n HAN		000000		2.0000	EA	38
800-5284	ASGY 800 HAN DTSPLAY U	Whte from $800-2284$	000000		2.0000	EA	32
LA	Lande Ascemply cost hrg		000000		0	EA	
4	LABOR TEST COST HOURS		000000		0	EA	

PART TUATITER	description 1	DESERPTION 2	$\begin{gathered} \text { EPF } \\ \text { DATE } \end{gathered}$	EOM	07Y/4989	Uor	Ut Refermat osscmiptron
$820-303+1$	Sthate digptay	$1.75 \mathrm{Ma}, \mathrm{atan}$ momt				E	
0000-Approyat	parts lis apphoval				1.0000	EA	cts 5197
0000-91	PARTS LIST REV LEvEL				1.0000	EA	FEV 4/ (05-07-9)
0000-primt	FEFERUMCE PRIM				1.0000	EA	820-303-1 R+V W/C
064-008	SWITCH PUSHETA SOET	C8\% 81218H06E			1.0000	EA	11
064-012	Shtch pomer doule pole	ALC0 x malowno			1.0000	Eh	09
075-002	black cap	C) \%8018th			1.0000	EA	25
088-80017	PWR SUPPLY $55,+1-124$ A	COMPUTEP PR00 HFS40-7628			1.0000	EA	31
206-205-008	PLATE COVER 25-P COHI	FA8			2.0000	EA	40
$208-001$	BRACKET UNIV I SHAPE	ReYstone 612			1.0000	EA	74
238-004-002	Screw Ph Ph SEP 4-40X1/4	Scote SEP			17.0000	EA	36
238-004-003	Scemb ph Pr ser 4-40v3/8				1.0000	EA	73
240-004-002	Scren Ph PM S5 4-40x1/4	SCOEA PAN			4.0000	EA	77
260-004-004	Scren pr on SS 4-40112	Scren pat			6.0000	EA	23
240-010-003	Scem ph bh $5510-32 \mathrm{3} / 8$	SCOEH			1.0000	EA	30
251-004	HUT XEP 55 4-60	HEPRUT			6.0000	EA	24
251-006	WUT KEP SS $6-32 \quad 250 \mathrm{HE}$	XEPNUT SMAL PATEEM			4.0000	5 S	04
255-44-4m-06	SPCR HEX AL M-F 4-40x3/4	SMGL PATERAN . 187 HEX			4.0000	EA	29
256-.375	LUG SOLDER br 3/8 dia	HH SMITH 1497			1.0000	88	49
25600. 00	Wh solotr 88.4	Hh SmIth 1412-4			1.0000	EA	41
269-004	WSHP FLAT NYL $41 / 16$	1/1H0\% 00			4.0000	EA	76
274-005	plug hole ny $3 / 80$ da	HH SMITH 3091HEYCO 2017			1.0000	EA	19
274-008	PLUG HOEE NY, 43707 C .	Trompler MP-.437			3.0000	EA	20
332-002	CORO POWE	BELOEN 17250			1.0000	EA	O6 5hipping kit
$372-254$	COM HOMO FOR 372-259	KELT80N \#HM-25			2.0000	EA	83 SHPPIHG KIT
$372-259$	$\begin{aligned} & \text { Conn 25-p mi d sloup } \\ & 81 \text { RTY installao. aty } \end{aligned}$	$\begin{aligned} & \text { CAMUN DG25P } \\ & 1 \text { SHIPPItG KIT } \end{aligned}$			2.0000	EA	
372-258	come 25-P FM D S/Oup go gly 1 instalid, aty	$\begin{aligned} & \text { CAWON DB-258 } \\ & 1 \text { SHIPPING KTI } \end{aligned}$			2.0000	68	
372-609-003	JACM SOCXET SET OF 2	Alsiey 609-003			2.0000	EA	13
375-001	COM BNO FM BuLtho RECP	kuncs 10-79-35			1.0000	EA	48
375-8177	Cons Thinay butho 3 UUG	TROMPETEA EJJ7			3.0000	EA	10
375-PL75	Cons casie plug mate	TROMPETER PL75-8			0	EA	80 (FOR CUSTOMEP REP)
376001	RECPT POWER	SHITHCRATT EAC-309			1.0000	EA	07
385-034-002	Conn $34-9 \mathrm{Ma} \mathrm{C8L} \mathrm{H}$	AMSLEY 609-3441			2.0000	8 A	58
388-369!	Cont 34-9 ML PO HI AT ANG	AHSLEY 60-3-3407			1.0000	Eh	56 (36 OH ITEM 33)
387-034-028	CABLE FLAT $289 \% 634$-CONO	AMSLEY 201-34			1.0000	f1	57
400-007	Mabe marving	700262			1.0000	EA	21
400-009	LasE CaUTHON DNGR yOLT	127431			1.0000	愲	43
402-001	PIn 22-30 AnG HMM-HE	H01Ex 08-65-0805			7,0000	EA	51
402-007		MOLEX 08-50-0106			19,0000	Pa	39
403-003	Cons 3-p C8L H\% LCS 156	Wotex 09-50-3031			1.0000	5A	37
$203-004$	CONW 4-PC8L MT LCK . 156	W0LEX 09-50-304.			1.0000	EA	44
403-006	COAn 6-0 OL M lar 156	Hatex 00-50-3061			2.0000	EA	38

Part lobntifler			Ef				4EV	
PAR DOCMIPER	descriplian	DESCRIPITOA 2	DATE	Cat	91Y/ASY	vot	U1	REREENCE DESORTPTION
403-01-01-02		MOLEX 22-01-3027			1.0000	EA		35
403-01-01-05	Com $5-8$ ChBLE MOUTT LCK	M016822-01-3057			1.0000	$E A$		45
$560-3160$	EPROM PPOGRamm ${ }^{\text {cha }}$				1.0000	EA		226 (0) 800-5270-1)
800-1005	COVER PLATE	F48			1.0000	88		75
800-1004	LENS, 800 SERIES	Prof Plas $7168800-1004$			1.0000	EA		02
800-1149	CHASSIS 1-3/4 IN, DISPLAY	FAG/DCRES			1.0000	EA		01
800-1151	FRT PML STMGE DISPAAY	FAB/PaIth/SCREP (1-3/4)			1.0000	EA		03
800-5269-1	ASSY REAK CONA BOARO				1.0000	CA		53
800-5270-1	ASSY DISPLAY/DODR HRU				1.0000	EH		33
800-5284	ASSY 800 HAN DISPLAY	MADE FROM 800-2284			1.0000	EA		3
La	Labor Asserbly cos wh				0	CA		
LT	LAOOR TEST COST HOURS				0	CA		

PaRT LDESTIFIER	Descripllon	Descripmion 2	$\begin{gathered} E F \\ \text { OATE } \end{gathered}$	ECH	QTMASS\%	104	Wey meprence deschiplion
800.5284	ASSY 300 HAN DISPLA	Ma0E From 300-2204				Er	
0000-APPROYAL	PARTS LIST APPROVAL				1.0000	8 \%	Cox- x_{0}
$0000 \cdot 92$	PRRTS LIST REV LEVEL				1.0000	8 A	Ret A 107-16-97
0000-PRTNT	REFERENCE print				1.0000	8	800.5284 REV A
0001-pRINT	REFEOENCE PRTNT				1.0000	EA	800-2284 REV A
036-054	BAP MONO G80pr 1000 R	MURATA RPEL21006681			1,0000	CA	c6
036-195	CAP MONO 0.1UF 1004 R 20%	MURATA RPE122L5U104\%50\%			1.0000	EA	6
037-033	CaP TMHT 2,24P 354 ?	MEMCO 782.2135 1			3.0000	EA	C3. 4.5
$037-041$	CAP TAMT $100 F 200$ \& 20%	VEMET 3300106102045 E			1.0000	CA	$\mathrm{C2}$
170-74.70245	74hcass b bus verver	764024			1.0000	EA	01
189080	OISPAPY 4 CHAR AlPMA 0.45	STEME4S P0435			3.0000	Ea	051.2.\%
386-341	CONN 36-9 ML AC MT HDR	AHSLEY 509-3427			1.0000	EA	$31{ }^{\text {a }}$
401-01-01-04	Header $4-9$ ge Lockna	M0L6x 26-60-4040			1.0000	EA	18
401-02-01-02	Covy $2-8$ pc mo at suats	7018x 22-35-3021			1.0000	EA	12
800-2284	9088800 Hay 0159.ay	Fab			1.0000	E4	0.
18	La80\% ASSE404y bog HRS				,	EA	
4	Labor test coet hourg				0	EA	
NOTE 1					1.0000	8 \%	J4 wor mstaldo
0SV600-5284	OUTSTOE La809 800-5284	poa			1.0000	8	

